

The Chemours Company 704-560-6435t
Corporate Remediation Group chemours.com
1007 Market Street, Room 13116A
Wilmington, DE 19899

March 29, 2018

Dr. Joe Ghiold, Ph.D., Project Manager Facility Management Branch Hazardous Waste Section Division of Waste Management NC Department of Environmental Quality 1646 Mail Service Center Raleigh, NC 27699-1646

Re: STORMWATER SAMPLING REPORT

Chemours Fayetteville Works Fayetteville, North Carolina EPA ID No. NCD 047 368 642

Dear Dr. Ghiold:

Enclosed, please find a PDF copy of the *Stormwater Sampling Report* for the Chemours Fayetteville Works. This document presents the results from a stormwater sampling program completed on 16 and 29 January 2018. This program assessed the effect of rainfall and resultant stormwater runoff on HFPO-DA (i.e. Dimer Acid) concentrations in nearby creeks, groundwater wells adjacent to the Cape Fear River, and the Site drainage network ditches leading to Outfall 002.

If you have any questions or need any additional information, please feel free to contact me at 704-560-6435.

Respectfully submitted,

Kin Harry

Kevin Garon Project Director

Chemours Corporate Remediation Group

cc: Christel Compton – Chemours Fayetteville Works

File

Enclosures

engineers | scientists | innovators

STORMWATER SAMPLING REPORT

Prepared for

The Chemours Company 1007 Market Street

PO Box 2047 Wilmington, DE 19899

Prepared by

Geosyntec Consultants, Inc. 130 Research Lane, Suite 2 Guelph, Ontario N1G 5G3

Project Number TR0726

29 March 2018

TABLE OF CONTENTS

1	INT	RODUCTION AND OBJECTIVES	1	
2	SITE BACKGROUND			
	2.1	Site Areas	2	
	2.2	HFPO-DA Use and Emissions to Air at Site	2	
	2.3	6 October 2017 Scrubber Upset Incident	3	
	2.4	Site Water Use, Water Balance and Drainage Network	3	
3	STORMWATER SAMPLING PROGRAM SCOPE AND METHODS			
	3.1	Sampling Event Timing	6	
	3.2	Site Drainage Network Sampling	7	
	3.3	Groundwater Sampling (LTW Wells)	8	
	3.4	Nearby Tributary Surface Water Sampling	9	
	3.5	Tributary Flow Gauging	9	
		3.5.1 Volumetric Discharge Calculations	9	
	3.6	General Field Procedures	10	
	3.7	Analytical Methods	10	
	3.8	Quality Control Samples	11	
4	RESULTS AND OBSERVATIONS			
	4.1	Data Validation	12	
	4.2	Site Drainage Network Sample Results	13	
	4.3	Groundwater Sampling Results	15	
	4.4	Nearby Tributary Sampling and Flow Measurements	15	
5	CO	CONCLUSIONS		
6	REFERENCES 1			

LIST OF TABLES

Table 1: HFPO-DA Results During Dry-Weather Sampling Event Table 2: HFPO-DA Results During Wet-Weather Sampling Event

LIST OF FIGURES

- Figure 1: Site Location
- Figure 2: Site Features
- Figure 3: Precipitation Data and Outfall 002 HFPO-DA Concentrations
- Figure 4: Primary Ditches in Site Drainage Network
- Figure 5: Stormwater Ditch Flow Directions
- Figure 6: Relative Flow Volumes Along Primary Ditches During Dry-Weather
- Figure 7: Sample Location Stormwater Capture Areas
- Figure 8: Groundwater and Nearby Tributaries Sampling Locations
- Figure 9: Dry-Weather Precipitation Data and Sample Collection Timing
- Figure 10: Wet-Weather Precipitation Data and Sample Collection Timing
- Figure 11: Stormwater Sampling Program Dry and Wet-Weather Sampling Event HFPO-DA Concentrations

LIST OF APPENDICES

Appendix A: Nearby Tributaries Flow Measurements

Appendix B: LTW Well Field Parameter Data

Appendix C: Laboratory Reports

EXECUTIVE SUMMARY

A stormwater sampling program was implemented to assess stormwater runoff on HFPO-DA (i.e. hexafluoropropylene oxide dimer acid) concentrations at the Chemours Fayetteville Works site in Fayetteville, North Carolina (NC, the Site). HFPO-DA stormwater related concentrations were evaluated in the Site drainage network, in on-Site groundwater wells adjacent to the Cape Fear River (the river) and in nearby tributaries (i.e. creeks) to the river. A rainwater sample was also collected which is being reported separately to the North Carolina Department of Environmental Quality (NCDEQ); additional rainwater samples have been collected separately from the stormwater sampling program. The sampling program consisted of a dry-weather (dry) event on 16 January 2018 and a wet-weather (wet) event on 29 January 2018 at the Site. The sampling program workplan was developed by Geosyntec Consultants (Geosyntec), with the field effort completed by Parsons of North Carolina Inc., (Parsons).

The Site contains four chemical manufacturing areas: the Chemours-operated Polymer Processing Aid Area (PPA Area) and Monomers IXM Area; the Dow-DuPont-Leased Area (Dow-DuPont Area); and the Kuraray America-Leased Area (Kuraray Area). Only the PPA and Monomers IXM Areas manufacture or use HFPO-DA. Both the PPA and Monomers IXM Areas have emission stacks that emit HFPO-DA to air which is subsequently deposited to the ground surface. Additionally, on 6 October 2017, a scrubber upset incident occurred in the Monomers IXM Area at the Vinyl Ethers South (VES) emission stack. The scrubber upset incident resulted in water mist with potentially elevated HFPO-DA concentrations being released to a localized zone in the southwest portion of the Monomers IXM Area. During rainfall events some of the HFPO-DA deposited from air emissions and the scrubber upset incident is likely carried into stormwater runoff which transports HFPO-DA into the Site drainage network.

The Site drainage network also conducts water from the manufacturing areas. The Site uses between 15 and 25 million gallons water per day (gpd) from the river for manufacturing purposes. This water is used on-Site and then: a) non-process water is released back to the Site drainage network and flows to Outfall 002, after applying appropriate treatments; or b) water used in Chemours processes is sent off-Site for treatment and disposal. Water flows continuously through the four primary ditches / water pathways in the Site drainage network. The four primary ditches / water pathways are: (a) the Cooling Water Channel from the Monomers IXM Area; (b) the Wood Lined Trench; (c) the Wastewater Treatment Plant (WWTP) Discharge Outlet; and (d) the Open Channel to Outfall 002. All ditches connect to the Open Channel that leads to Outfall 002, which then discharges to the river.

Using data for 16 January 2018 from indicative flow gauges at the Site (dry event), approximately sixty percent (60%) of the collected river water was unprocessed and used as non-contact cooling water (NCCW). This water is released directly to the Site drainage network immediately after use. Thirty percent (30%) of collected water exceeded Site requirements for that day and was consequently released back to the Site drainage network. The remaining approximately ten percent (10%) of the collected water was processed to yield filtered and demineralized water for use in chemical processes and Site sanitary systems (i.e. sinks, toilets, etc.,). After use, this filtered and demineralized water is sent to the WWTP for treatment and then released to the Site drainage network. The process of creating filtered and demineralized water also produces about 70,000 gpd of wastewater, about 0.4% of flow at Outfall 002; this wastewater is sent directly to the WWTP. The entire fraction of filtered and demineralized water used in Chemours processes, approximately 55,000 gpd, is sent off-Site for treatment and disposal. For the wet event on 29 January 2018, the increase in flow volume from stormwater run-off could not be assessed quantitatively, but relative flow volumes in the drainage network are expected to be reasonably similar to the dry event.

The Site drainage network sampling data showed that HFPO-DA concentrations were lower during the dry event (40 to 220 nanograms per liter [ng/L]) compared to the wet event (140 to 4,300 ng/L). There was no strong trend in dry event concentrations with respect to location within the drainage network. For the wet event, drainage pathways with only stormwater (i.e., no water was present during the dry event) had the highest concentrations of HFPO-DA (1,200 to 4,300 ng/L). This suggested that some of the aerially deposited HFPO-DA was transported in stormwater runoff as it flowed overland into the ditches. Where NCCW and excess river water was also present, the HFPO-DA concentrations were lower. For example, in the Wood Lined Trench, which drains the PPA and Kuraray Areas, after addition of NCCW and excess river water to the trench, concentrations declined from between 1,200 to 3,300 ng/L to a concentration of 140 ng/L.

The measured Outfall 002 HFPO-DA concentration during the wet event was 750 ng/L compared to a dry event value of 75 ng/L. The HFPO-DA concentration during the wet event was dominated by HFPO-DA mass flux from the Monomers IXM Area. The sample collected from the Cooling Water Channel had a HFPO-DA concentration of 3,600 ng/L. This sample was unique as compared to other samples on-Site. It had a relatively high concentration and its volume was a combination of stormwater and all the NCCW used in the Monomers IXM Area, representing about 30% of all intake river water. By contrast, at the Wood Lined Trench the combined stormwater NCCW sample had a concentration of 140 ng/L. Additionally, the inputs prior to the Cooling Water Channel into the Open Channel were 140 and 210 ng/L. Therefore, the mass flux of HFPO-DA from the

Monomers IXM Area is most likely the primary source of HFPO-DA that increased Outfall 002 concentrations to 750 ng/L. The observed concentration trends in the wet sample event seem to confirm that the elevated Monomers IXM Area mass flux is somehow related to the 6 October 2017 scrubber upset incident.

Groundwater and surface water sample results were also evaluated and compared to stormwater results. Data from the groundwater wells adjacent to the river showed no change in HFPO-DA concentrations between the dry and wet sampling events. The surface water tributaries, Willis Creek, Georgia Branch Creek, and the Former Outfall 002 all had increases in flow during the wet event. The creeks had the largest increase--about 5-fold--while the Former Outfall 002 had a 2-fold flow increase. HFPO-DA concentrations increased in the creeks during the wet event. The highest Georgia Branch creek concentration increased from 1,100 to 2,000 ng/L and Willis Creek had an increase of 310 to 560 ng/L. These data suggested that stormwater runoff into the creeks likely carried aerially deposited HFPO-DA, which then increased the concentrations. The Former Outfall 002 had higher concentrations of HFPO-DA than the creeks (8,400 ng/L) in the dry event and its concentration decreased with the addition of stormwater runoff (5,700 ng/L).

The stormwater sampling program, in addition to other focused investigations around the VES emissions stack, have supported determining that the cause of elevated Outfall 002 concentrations during rainfall since 9 October 2017 are related to the 6 October 2017 scrubber upset incident. Based on this determination, Chemours is taking several actions. Chemours has completed excavating shallow soils adjacent the Cooling Water Channel that were impacted by the scrubber upset incident. Chemours has also removed from the Monomers IXM area two roll-off bins that contained spent carbonate; water in the roll-off bins had elevated levels of HFPO-DA. Chemours has also excavated soil from under these roll-off bins. Additional actions in progress include washing equipment and structures around the scrubber upset incident area. Additionally, Chemours plans to reduce emissions to air from the PPA and Monomer IXM areas by installing emissions reduction equipment in May 2018.

1 INTRODUCTION AND OBJECTIVES

This report presents results and observations from a stormwater sampling program performed at the Chemours Company FC, LLC's (Chemours) Fayetteville Works site in Fayetteville, North Carolina (the Site). In mid- to late 2017, observations of HFPO-DA (i.e. hexafluoropropylene oxide dimer acid) concentrations in Outfall 002 samples suggested increased concentrations after rainfall events. Stormwater runoff on-Site in the drainage network is directed to Outfall 002 and then towards the Cape Fear River (the river). The objective of the sampling program was to evaluate the effect of rainfall and stormwater runoff on HFPO-DA concentrations in Site drainage network ditches. During the sampling program, HFPO-DA concentrations were also measured in nearby surface water tributaries (i.e. creeks) flowing into the river, groundwater wells adjacent the river and in rainfall. The stormwater sampling program was conducted over two events--a dry-weather (dry) event and a wet-weather (wet) event--to compare the changes in HFPO-DA concentrations between these conditions.

The remainder of this report is organized into the following sections:

- Section 2: Site Background
- Section 3: Stormwater Sampling Program Scope and Methods
- Section 4: Results and Observations
- Section 5: Conclusions
- Section 7: References

2 SITE BACKGROUND

This section presents key aspects of the Site that supported both the design and interpretation of the stormwater sampling program, including the chemical production areas at the Site, where HFPO-DA is used and emitted to air, how HFPO-DA is transported into the Site drainage network, a 6 October 2017 scrubber upset incident, and Site water use and the drainage network.

¹ Note, rainfall HFPO-DA data are being reported to North Carolina Department of Environmental Quality (NCDEQ) in data submittals separate from this report and are not presented, described or discussed in this report.

2.1 Site Areas

The Site is located about 15 miles south of Fayetteville, North Carolina (Figure 1). There are four chemical production areas on-Site. These areas are shown in Figure 2 and are listed below:

- Chemours Monomers IXM Area often referred to by sub-areas Vinyl Ethers North [VEN] and Vinyl Ethers South [VES]);
- Chemours Polymer Processing Aid Area (PPA Area);
- Kuraray America Leased Area (Kuraray Area); and
- Dow-DuPont Leased Area (DuPont-Dow Area).

HFPO-DA is manufactured in the PPA Area and used in processes in the Monomers IXM and PPA Areas. Neither the Kuraray nor the Dow-DuPont areas manufacture, store or use HFPO-DA.

Presently, and historically, all wastewater and run-off water from the PPA Area is collected and sent off-Site for treatment and disposal. The PPA Area currently contributes emissions to air from building leaks (ERM, 2018) and from emissions stacks (Weston Solutions, 2018). These emissions are currently being addressed with the North Carolina Division of Air Quality (NCDAQ) and are not a subject of this report.

Presently all Monomers IXM Area waste is shipped off-Site for treatment and disposal. Prior to mid-2017 wastewater from the Monomers IXM Area was sent to the On-Site WWTP and subsequently discharged to Outfall 002. The Monomers IXM Area currently contributes HFPO-DA emissions to air from building leaks (ERM, 2018) and from emissions stacks (Weston Solutions, 2018).

2.2 HFPO-DA Use and Emissions to Air at Site

HFPO-DA is produced and used in the PPA and Monomers IXM Areas. Emissions stacks in both areas release HFPO-DA as air emissions. Some of this emitted HFPO-DA is deposited locally, with higher deposition loads expected closer to the emissions stacks. During rainfall events some of this deposited HFPO-DA will be mobilized in stormwater runoff and be directed into the Site drainage network. Chemours is taking action to substantially reduce HFPO-DA emissions to air with installation of emission reduction equipment planned for May 2018.

2.3 6 October 2017 Scrubber Upset Incident

On 6 October 2017 a scrubber upset incident occurred at the VES emissions stack (Parsons, 2018a). The incident resulted in scrubber water containing HFPO-DA being emitted from the VES emissions stack and deposited locally to soils, buildings and equipment around the VES emissions stack via water droplets.

Rainfall then occurred at the Site on the following days:

- 1.84 inches rainfall; 7 October 2017
- 1.14 inches rainfall; 8 October 2017
- 0.08 inches rainfall; 9 October 2017

The Outfall 002 3-day composite sample collected on 9 October 2017 had the highest HFPO-DA concentration (3,700 ng/L) observed since 12 July 2017² (Figure 3). Following 6 October 2017 there have been no additional incidents. To date, Outfall 002 HFPO-DA concentrations still increase after rainfall and in one case following snow melt (22 January 2018). Notably, the HFPO-DA concentrations in Outfall 002 after rainfall events have been diminishing over time.

These observations suggest that increased Outfall 002 concentrations after rainfall are related to HFPO-DA released during the scrubber upset incident that is washed into the Site drainage network by on-Site rainfall. The stormwater sampling program and results that are described in the following sections further build upon and examine these observations.

2.4 Site Water Use, Water Balance and Drainage Network

The Site uses water from the river in chemical processes to cool equipment and as sanitary water. Between 15 and 25 million gallons of water per day (gpd) are collected from the river intake at the North East boundary of the Site and is then transferred to the Site. After being used on Site, the collected water is then treated and then released via the Site drainage network back to the river (note, all Chemours process water used in the PPA and Monomer IXM areas is sent off-Site for treatment and disposal). The Site drainage network consists of four primary drainage ditches that direct flow to Outfall 002. These ditches are depicted on Figure 4 and listed below:

² In late June 2017 the facility took initial corrective actions to stop process-based HFPO-DA releases to Outfall 002 (Chemours, 2017).

- the Wood Lined Trench,
- the Monomers IXM Area Cooling Water Channel,
- the Wastewater Treatment Plant (WWTP) Discharge outlet (Outfall 001), and
- the Open Channel to Outfall 002

The first three drainage ditches listed above discharge into the Open Channel to Outfall 002, which in turn discharges into the river. Four types of discharged water enter the drainage network:

- excess river water,
- NCCW,
- treated wastewater, and
- stormwater runoff (from rainfall).

The two largest uses of intake river water are NCCW and unused excess river water-these two sources account for about ninety percent (90%) of intake river water. NCCW river water is used to regulate temperatures in equipment at the Kuraray and Monomers IXM Areas. NCCW, as the name implies, does not come into contact and is not used by the chemical production processes.

The remaining fraction of intake river water, about ten percent (10%)--not used as NCCW or released as excess river water--is processed into filtered and demineralized water. This water is used on-Site in chemical processes, as a higher grade (i.e. low sediment) NCCW and as a sanitary water source (i.e. sinks and toilets). After use, the filtered and demineralized water is sent to the WWTP for treatment before it is released to the Open Channel to Outfall 002. The process of producing the filtered and demineralized water also produces about 70,000 gpd of wastewater, equivalent to 0.4% of flow at Outfall 002; this wastewater is sent to the WWTP. All Chemours process wastewater from the PPA and Monomers IXM Areas where HFPO-DA is produced or used is sent off-Site for treatment and disposal. The volume of wastewater sent off-Site is approximately 55,000 gpd.

During rainfall events, stormwater runoff flows into the Site drainage network and contributes to the volume of water discharged at Outfall 002. The flow direction of Site ditches guiding stormwater flow runoff is depicted in Figure 5.

During the 24-hour period of 16 January 2018 corresponding to the dry event, 17.2 million gallons were released to Outfall 002. This is equivalent to 12,000 gallons per minute (gpm). There are gauges at the Site that provide indicative measurements of flow.

Using data from these gauges, the approximate breakdown of where intake river water was used and discharged at Site for 16 January 2018 was as follows:

- 30% Excess river water not used; released to Wood Lined Trench;
- 30% Kuraray Area NCCW; released to Wood Lined Trench;
- 30% Monomers IXM Area NCCW; released to Cooling Water Channel; and
- 10% WWTP treated water; released to Open Channel to Outfall 002.

Excess river water and Kuraray Area NCCW both contribute flow to the Wood Lined Trench making it the with the largest flow, about 60% of the total flow. The next largest flow is from the Monomers IXM Area NCCW Cooling Water Channel with 30% of the flow. The smallest flow quantified here comes from the WWTP treated water discharge.

The location and magnitude of excess river water and NCCW contributions to the Site drainage network flow are depicted in Figure 6. Based on these data, water coming from the Wood Lined Trench contributes approximately 60% of the flow observed at Outfall 002 and the Monomers IXM Area NCCW contributes approximately 30% of flow, with the remaining approximate 10% coming from the WWTP.

During the 24-hour period of 29 January 2018 corresponding to the wet sampling event, 20.44 million gallons of water were released to Outfall 002. This is equivalent to 14,200 gpm, which is somewhat higher than the dry event. The relative contributions of water volume from river water intake and stormwater runoff could not be assessed using Site gauge data. However, the use of river water on-Site is expected to be similar to the dry event. Further, the relative distribution of water volume from stormwater is expected to be generally similar to the dry conditions since the Cooling Water Channel (~30% of flow) captures stormwater flow from a slightly smaller area than the Wood Lined Trench (~60% of flow) based on catchment areas plotted in Figure 7.

3 STORMWATER SAMPLING PROGRAM SCOPE AND METHODS

The stormwater sampling program workplan document (Chemours 2018) was developed by Geosyntec Consultants (Geosyntec) and submitted to NCDEQ by Chemours. The sampling program field effort was completed by Parsons of North Carolina Inc. (Parsons). The stormwater sampling plan incorporated data collection and sampling during dry- and wet conditions. This includes the following:

- 11 surface water sampling locations in the Site drainage network;
- 5 groundwater sampling locations from the Long Term Wells (LTW) adjacent to the river;
- 1 rain water sampling location collected along the access road to the river water intake³:
- 2 surface water sampling locations in Willis Creek (tributary);
- 2 surface water sampling locations in Georgia Branch Creek (tributary);
- 1 surface water sampling location in Former Outfall 002 Channel (tributary); and
- 3 tributary flow measurement locations; one location per tributary.

Site drainage network sample locations are shown on Figures 4, 5, and 6. The location of the nearby tributary and groundwater samples and tributary flow measurement locations are shown on Figure 8. The following subsections provide details of specific sampling activities.

3.1 Sampling Event Timing

The dry-weather sampling event occurred on 16 January 2018. The last recorded rainfall prior to the dry event was 0.22-inches of precipitation⁴ four days prior on 12 January 2018.

The wet-weather sampling event occurred on Monday 29 January 2018. Rainfall began Sunday 28 January 2018 at 9:15 am and lasted until Monday 29 January 2018 at 6:00 pm with a total rainfall amount of 2.1-inches over the 32-hours of rainfall.

Figures 9 and 10 plot the amount of rain falling during the sampling period in 15-minute intervals along with the sample collection times during the wet and dry events and the flow gauging times during the wet event. The figures show no rainfall during the dry event and rainfall during the wet event with samples collected near the end of the 32-hour rainfall period.

6

³ Note, rainfall HFPO-DA data are being reported to North Carolina Department of Environmental Quality (NCDEQ) in data submittals separate from this report and are not presented, described or discussed in this report.

⁴ Precipitation data used in this report are from the USGS W.O. Huske station at the W.O. Huske Dam (Figure 2) located between 0.5 and 1.25 miles from manufacturing areas at Site.

3.2 Site Drainage Network Sampling

Site drainage network samples were collected from locations shown on Figures 4, 5 and 6. The stormwater catchment areas for each sample location are presented on Figure 7. Samples were collected by attaching a sample bottle to the end of an aluminum rod using a nylon zip tie and immersing the bottle into the flow of water to fill the bottle. Each sample location is described below:

- Location 1: Site drainage network surface water sample from the Open Channel just before entering the pipe to Outfall 002 at the river. This sample represents the combined flow of all sources released to Outfall 002. This includes stormwater runoff, treated wastewater, NCCW and excess river water.
- Location 2: Site drainage network surface water sample representing water flow from the eastern section of the Site as shown in light blue on Figure 7. This sample represents water from Monomers IXM Area NCCW and stormwater runoff from the entire light blue catchment area. This also includes water from the dark blue areas that drain into the light blue area on Figure 7.
- Location 3: Site drainage network surface water sample representing stormwater runoff only from the dark blue catchment area underneath the label for sample location 3 on Figure 7. The sample was collected from the inlet to the south end culvert at the east side of roadway ditch just north of Avenue B, capturing surface stormwater flow from the eastern green-field area.
- Location 4: Site drainage network surface water sample representing stormwater runoff and all Monomers IXM Area NCCW from the dark blue catchment area underneath the label for sample location 4 on Figure 7. The sample was collected from the Cooling Water Channel inlet culvert located before the Cooling Water Channel becomes buried and leads to the Open Channel to Outfall 002.
- Location 5: Site drainage network surface water sample representing stormwater runoff only from the medium green catchment area underneath the label for sample location 5 on Figure 7. The sample was collected from the Wood Lined Trench. The catchment area for location 5 also includes the dark green catchment area, which drains into the medium green catchment area.
- Location 6: Site drainage network surface water sample representing stormwater runoff only from the medium green catchment area underneath the label for sample location 6 on Figure 7. The sample was collected from the inlet east end

culvert entering the Wood Lined Trench from the roadway ditch south of Fourth Street, prior to where the water mixes with the Wood Lined Trench flow.

- Location 7: Site drainage network surface water sample representing stormwater runoff, NCCW and excess river water from the western portion of the Site represented by the light green catchment area underneath the label for sample location 7 on Figure 7. The sample was collected from the Wood Lined Trench. The stormwater catchment area for location 7 also includes the medium and dark green catchment areas that drain into the Wood Lined Trench.
- Locations 8 and 9: Surface water sample from Outfall 001 WWTP discharge to main collection trench and Open Channel to Outfall 002. This sample represents treated water being released from the WWTP. During the dry event both samples were collected on 16 January 2018. During the dry event the sample for Location 8 was collected on 29 January 2018 and Location 9 was collected at the same physical location but 24 hours later on 30 January 2018. A period of 24 hours represents the average hydraulic residence time of river water used as sanitary, filtered or demineralized water to reach, be treated by and then discharged by the WWTP.
- Location A: Site drainage network surface water sample taken from the Open Channel about 1,500 feet before the Outfall 002 pipe to the river. This sample represents the combined flow from all of the Site except the stormwater overflow pond area south of the Open Channel. Water captured by this sample includes stormwater runoff, treated wastewater, NCCW and excess river water.
- Location B: Site drainage network surface water sample representing stormwater runoff only from the dark green catchment area underneath the label for sample location B on Figure 7. The sample was collected from the north-facing headwall immediately upstream of the beginning of the southward-flowing Wood Lined Trench. This location captures stormwater runoff from the PPA Area, a part of the Kuraray Area and some wooded area.

3.3 Groundwater Sampling (LTW Wells)

The LTW groundwater wells sampled are shown on Figure 8. The wells were sampled using low-flow sampling methods consistent with Site practices. Field parameter data collected during sampling are presented in Appendix B.

3.4 Nearby Tributary Surface Water Sampling

Off-Site tributary surface water samples were collected by attaching a sample bottle to the end of an aluminum rod using a nylon zip tie and immersing the bottle into the flow at the middle of each tributary sampling location to fill the bottle with surface water. Samples were collected at locations depicted on Figure 8 and listed below:

- SW-WC-04 in Willis Creek;
- SW-WC-05 in Willis Creek;
- SW-GB-03 in Georgia Branch Creek;
- SW-GB-04 in Georgia Branch Creek along with duplicate sample; and
- SW-002OLD-01, near the discharge point of the Former Outfall 002 channel mouth to the river.

3.5 Tributary Flow Gauging

Tributary volumetric water flows were estimated for each tributary by calculating the volume of water flowing through the stream based on: a) point velocity measurements made using a Marsh McBirney Flow Mate Model 2000 portable flow meter; and b) the cross-sectional area of the stream measured using a survey tape. Flow volume measurements were taken at locations SW-WC-05, SW-GB-04, and SW-002OLD-01 depicted on Figure 8.

3.5.1 Volumetric Discharge Calculations

Each tributary's discharge was calculated using the Mean Section Method (Rantz, 1982). In this method, the tributary cross section is divided into cells by the number of measurement points. Discharge values were calculated for each cell and summed to obtain the total stream discharge. The discharge, Q (cubic feet per second; ft^3/s), is calculated from the calculated area between two vertical measurement points, A_i (square feet; ft^2), and the average stream velocity, \bar{v} (feet per second; $\mathrm{ft/s}$), of the two measurement points as shown below:

$$Q = \sum A_i \bar{v}$$
 Equation 1

$$Q = \sum A_i \left(\frac{v_i + v_{i+1}}{2} \right)$$
 Equation 2

The calculations assume a trapezoidal shape area for each cell. The only exception to this are the edge cells in Willis Creek since the culvert cross section shape is circular. In this

instance, the edge cells were assumed to have a triangular area. Using the depth measurements of the water surface and the tributary bottom at each measurement point, the water column depth, d_i (feet; ft), is calculated. The discharge is then calculated using the water column depths and the width of the cell, Δx (ft):

$$Q = \sum \frac{\Delta x (d_i + d_{i+1})}{2} \left(\frac{v_i + v_{i+1}}{2} \right)$$
 Equation 3

Appendix A provides the detailed tables outlining these calculations, a conceptual schematic of how flow was gauged, and photographs of the three flow gauging locations.

3.6 General Field Procedures

All equipment was inspected by Parson's Site Supervisor and calibrated daily prior to use in the field according to the manufacturer's recommended guidelines. Calibration information was recorded in a field logbook. All sampling was conducted in accordance with the requirements listed in the Perfluorinated Compounds (PFCs) Sampling Checklist provided in the Stormwater Sampling Plan (Chemours, 2018).

All sampling equipment was decontaminated between sample locations in the following manner:

- Tap water rinse;
- Scrub with tap water containing non-phosphate detergent (i.e. Alconox®);
- Tap water rinse;
- De-ionized water rinse; and
- Air dry.

After decontamination, field equipment was used at the next sampling location. Disposable equipment (e.g. gloves, tubing, etc.) were not reused. New sample containers were used for collecting each sample.

3.7 Analytical Methods

All samples were analyzed for HFPO-DA by TestAmerica of Denver, Colorado (TestAmerica), a North Carolina-certified laboratory using an approved United States Environmental Protection Agency (USEPA) method. All collected surface water, groundwater and rainfall samples were analyzed for HFPO-DA by EPA method 8321A.

3.8 Quality Control Samples

The following quality control (QC) samples were collected during each stormwater sampling program event:

- One equipment blank for groundwater sampling equipment and methods;
- One equipment blank for Site drainage network and surface water sampling equipment and methods;
- One nearby tributary surface water sample field duplicate; and
- Two matrix spikes (MS).

TestAmerica provided all analytical data to Chemours' data validation contractor, AECOM's in-house Analytical Data Quality Management (ADQM) group. Laboratory analytical reports are included in Appendix C. The data package contained raw data that was reviewed by ADQM for compliance with the laboratory standard operating procedures (SOPs) and usability. TestAmerica also delivered the analytical data electronically for upload to the Chemours Locus EIMTM database.

All data were reviewed using the Data Verification Module (DVM). The DVM is an internal review process used to assist with the determination of data usability. The electronic data deliverables received from TestAmerica were loaded into the Locus EIMTM database and processed through a series of data quality checks, which are a combination of software (the DVM) and manual reviewer evaluations. The data are evaluated against the following data usability checks:

- Field and laboratory blank contamination
- USEPA hold time criteria
- Missing QC samples
- MS/MSD recoveries and the relative percent differences (RPDs) between these spikes
- Laboratory control sample(LCS)/control sample duplicate (LCSD) recoveries and the RPD between these spikes
- Surrogate spike recoveries for organic analyses
- RPD between field duplicate sample pairs

The DVM applies the following data evaluation qualifiers to analysis results, as warranted:

- R Unusable result. Analyte may or may not be present in the sample.
- B Not detected substantially above the level reported in the laboratory or field blanks.
- J Analyte present. Reported value may not be accurate or precise.
- UJ Not detected. Reporting limit may not be accurate or precise.

The individual DVM narrative report for each lot entered into the EIM database summarized which samples were qualified (if any), the specific reasons for the qualification, and the potential bias in reported results. In addition, laboratory results greater than the method detection limit (MDL) but less than the reporting limit (RL) were qualified "J" and should be considered estimated values.

The DVM review process described above was performed on 100% of the data generated for the sampling events. The DVM review process was supplemented by a manual review of the instrument-related QC results for calibration standards, blanks, and recoveries to evaluate the overall review process to be consistent with Stage 2b of the USEPA Guidance for Labelling Externally Validated Laboratory Analytical Data for Superfund Use (EPA-540-R-08-005 2009).

4 RESULTS AND OBSERVATIONS

HFPO-DA concentration data from the dry and wet sampling events are presented in Tables 1 and 2, respectively. The results are described below.

4.1 <u>Data Validation</u>

The data collected during the dry and wet sampling events were considered usable. The laboratory reports and data verification are documented in Appendix C. Two samples had qualifiers applied:

- Ditch Location 7 during the dry event (FAY-DRY01-SW-DCH-07) had a B qualifier applied to the result, 40 B ng/L. An equipment blank had a detection that was at least 20% of the analyzed value, suggesting a potential high bias.
- Willis Creek location (FAY-WET01-SW-WC-05-012918) had a J qualifier applied to the result, 506 J ng/L. The surrogate standard recovery was below criterion, suggesting a potential low bias.

4.2 <u>Site Drainage Network Sample Results</u>

Dry-weather Site drainage network surface water HFPO-DA sample concentrations are provided in Table 1 and posted on Figure 11, which shows the drainage network. The highest HFPO-DA sample concentration in this event was 220 ng/L at Location 8, the WWTP. The lowest sample concentration was 40 ng/L at Location 7, the downstream sampling point along the Wood Lined Trench. Three sample locations, B, 3 and 6 (Figure 6), were dry during the dry event. These locations were upstream of NCCW or excess river water sources. Overall, sample concentrations were relatively similar across the drainage network for the dry event. The median concentration was 110 ng/L. No spatial concentration or mass flux trend was apparent in the data, suggesting no location dominated HFPO-DA mass flux to Outfall 002 during this sampling event.

Wet-weather Site drainage network surface water HFPO-DA sample concentrations are provided in Table 2 and posted on Figure 11. The highest HFPO-DA sample concentration was 4,300 ng/L at Location 3, representing stormwater run-off from the green-field to the south of the Monomers IXM Area (Figures 6 and 11). The lowest sample concentration was 140 ng/L at Location 7 at the end of the Wood Lined Trench. The median concentration was 2,050 ng/L.

Below are notable observations from the dry and wet event sampling data:

- The wet event water samples that are primarily stormwater runoff (e.g. samples B, 5, 6, and 3 that were up-channel of NCCW and excess river water sources) have elevated HFPO-DA concentrations likely related to aerial deposition.
- NCCW and excess river water entering the Wood Lined Trench from the Kuraray Area reduce HFPO-DA concentrations. Location 7 (140 ng/L) was a combination of stormwater flow, NCCW and excess river water. Samples that were primarily stormwater (Locations B, 5 and 6) upstream of Location 7 ranged from 1,200 to 3,300 ng/L, while the NCCW and excess river water HFPO-DA concentrations are much lower, typically between 20 and 50 ng/L based on samples collected near the river intake. Therefore, the concentration of 140 ng/L observed at Location 7 suggests that the higher stormwater concentrations up-gradient in the ditch (1,200 to 3,300 ng/L) were diluted by the much larger volumes of NCCW and excess river water which had much lower HFPO-DA concentrations.
- The dry and wet event concentrations at Location 7, the end of the Wood Lined Trench were relatively similar, 40 and 140 ng/L. This suggests that stormwater runoff into the Wood Lined Trench does not greatly affect HFPO-DA concentrations.

- WWTP concentrations (Locations 8 and 9) show minimal concentration differences between dry and wet events (220 and 150 ng/L vs. 210 and 280 ng/L). The WWTP discharge does not contain stormwater runoff. Treated water coming from the WWTP is originally from filtered and demineralized river water.
- The highest wet event concentration (4,300 ng/L) was at Location 3 which is often down-wind of the Monomer IXM Area emission stacks and on 6 October 2017 was downwind of the VES stack where the scrubber upset incident occurred (wind was blowing north to south). These observations suggest aerial deposition of HFPO-DA from the emissions stacks and the scrubber upset incident contributed to concentrations observed at Location 3.
- HFPO-DA mass flux in the Monomers IXM Area increased during the wet event. The sample at Location 4, with a concentration of 3,600 ng/L, was taken in the Cooling Water Channel which contains stormwater runoff and NCCW with a combined flow rate of around 4,000 gpm. The dry event Cooling Water Channel sample had a concentration of 110 ng/L. The increase from 110 to 3,600 ng/L suggests Monomers IXM Area stormwater runoff increased the Cooling Water Channel HFPO-DA concentrations, and that Monomers IXM Area stormwater runoff has much higher concentrations than Wood Lined Trench captured runoff.
- HFPO-DA mass flux from the Monomers IXM Area during rainfall events contributes most of the HFPO-DA mass observed at Outfall 002. The Outfall 002 concentration was measured as 750 ng/L during the wet event. Initially the Wood Lined Trench at 140 ng/L, the WWTP at 210 ng/L empty into the Open Channel. Then the Monomers IXM Area Cooling Water Channel joins the Open Channel with a concentration of 2,900 ng/L. The increase in concentration from around 140 to 210 ng/L in the Open Channel to 750 ng/L after the Cooling Water Channel joined the flow suggests stormwater runoff from the Monomers IXM Area via the Cooling Water Channel supplied the majority of the HFPO-DA observed at Location 1.
- The HFPO-DA concentration at Location A (220 ng/L) is inconsistent with the concentration observed at Location 1 (750 ng/L). Location A is immediately upchannel of Location 1 and no process or stormwater ditch flows join a channel between Locations 1 and A that would substantially increase or dilute the concentrations. The discrepancy between these results suggests some variability in water quality during the wet event, which is to be expected based on variability in rainfall and transport times within the drainage network.

4.3 **Groundwater Sampling Results**

The dry and wet-weather LTW Well groundwater HFPO-DA concentration data are provided in Tables 1 and 2, respectively, and field parameter data measured during sampling are provided in Appendix B. Except for LTW-02 during the dry event groundwater sample concentrations were consistent with prior monitoring events in 2017 (Parsons, 2017 and 2018b) and showed no substantial change between the dry and wet events.

The sample concentration from LTW-02 during the dry event was 650 ng/L, while the wet event concentration 13 days later was 6,600 ng/L. For context the Additional Investigation event concentration of LTW-02 was 6,800 ng/L on 16 November 2017 and the Supplemental Groundwater Sampling event concentration was 9,700 ng/L. These data suggest that the LTW-02 dry event result was not representative of typical conditions at that location.

4.4 Nearby Tributary Sampling and Flow Measurements

The dry and wet-weather nearby tributary surface water HFPO-DA sample concentrations are provided in Tables 1 and 2, respectively. The dry event Former Outfall 002 sample had the highest HFPO-DA concentration at 8,400 ng/L. HFPO-DA concentrations from Georgia Branch Creek samples were between 980 and 1,100 ng/L and from Willis Creek samples were between 83 and 310 ng/L. The wet event Former Outfall 002 sample concentrations declined to 5,700 ng/L while Georgia Branch Creek and Willis Creek sample concentrations both increased, with 1,110 to 2,700 ng/L for Georgia Branch Creek and 97 to 560 ng/L for Willis Creek.

The flow measurement data for the three nearby tributaries at measurement locations shown on Figure 8 are were as follows:

- Willis Creek dry event: 2,650 gpm; wet event: 12,980 gpm;
- Georgia Branch Creek dry event: 140 gpm; wet event: 850 gpm; and
- Former Outfall 002 dry event Event: 425 gpm; wet event: 865 gpm.

The detailed calculations supporting these values are provided in Appendix A. Notable observations from the nearby tributary concentration and flow data are provided below:

Willis Creek and Georgia Branch Creek have larger flow volume increases during
the wet event, approximately 5-fold increases, compared to the Former Outfall
002, which had a 2-fold increase. Field observations indicated the Former Outfall
002 channel was in a wooded area with sandy soils, likely leading to faster

infiltration of rainfall and proportionally less runoff being generated as compared to the other tributaries.

- The Former Outfall 002 sample concentrations decreased by a factor of two in the
 wet event, which is inversely proportionate to the increased flow volume and
 maintains the same mass flux. This suggests that the increased rainfall-related
 flow had much lower HFPO-DA concentrations than the dry-weather surface
 water.
- Willis Creek and Georgia Branch Creek sample concentrations increased, suggesting infiltration of surface water brought HFPO-DA into the creeks. Similar to the on-Site areas, this surface water runoff may have carried aerially deposited HFPO-DA into these creeks, contributing to both the higher flow volumes and HFPO-DA concentrations

5 CONCLUSIONS

Outfall 002 HFPO-DA concentrations increase during and immediately after rainfall events. These concentration increases are primarily the result of continued flushing of HFPO-DA released in the Monomers IXM Area during the 6 October 2017 scrubber upset incident. Stormwater runoff from other areas of the Site (e.g. Kuraray and PPA) show elevated concentrations of HFPO-DA, but these are diluted in the Site drainage network with the addition of NCCW and excess river water.

Groundwater wells show no substantial HFPO-DA concentration changes between dry and wet events. Flow and concentrations increased in nearby creeks during the wet event suggesting stormwater runoff increased HFPO-DA concentrations; meanwhile the mass flux from the Former Outfall 002 stayed relatively constant suggesting the base flow from groundwater contributes the majority of the observed HFPO-DA concentrations.

Since investigating and determining that the cause of elevated Outfall 002 HFPO-DA concentrations during rainfall since 9 October 2017 are related to the 6 October 2017 scrubber upset incident, Chemours has taken action. Actions completed to date include excavating shallow soils adjacent the Cooling Water Channel that were impacted by the scrubber upset incident, removing spent carbonate roll-off bins, and excavating shallow soils underneath the removed roll-off bins. Water in the roll-off bins had elevated levels of HFPO-DA. Actions in progress include power washing equipment and structures around the scrubber upset incident area. The full scope of these investigations and actions will be reported to NCDEQ in a separate document. Additionally, Chemours is taking action to reduce HFPO-DA emissions to air. Chemours is planning to install emissions reduction equipment in the PPA and Monomers IXM Areas in May 2018.

6 REFERENCES

- Chemours, 2017. Chemours Announces Voluntary Actions to Respond to North Carolina Community. http://pages.chemours.com/FayettevilleStatement.html. Accessed March 18, 2018.
- Chemours, 2018. Technical Memorandum. Proposed Fayetteville Works Stormwater Sampling Plan. 02 January 2018.
- ERM, 2018. Third-Party LDAR Program Review. Fayetteville Works Facility, Fayetteville, North Carolina.
- Parsons, 2017. Technical Memorandum. Supplemental Groundwater Sampling Memorandum, Fayetteville Works Facility, Fayetteville, North Carolina. November 3, 2017.
- Parsons, 2018a. Focused Feasibility Study Report PFAS Remediation, Chemours Fayetteville Works. RCRA Permit No. NCD047362642-R2-M3.
- Parsons, 2018b. Additional Site Investigation Report, Chemours Fayetteville Works Site. RCRA Permit No. NCD047368642-R1.
- Rantz, S.E., 1982. Measurement and computation of streamflow: Volume 1, Measurement of stage and discharge (No. 2175). Chapter 5: Measurement of discharge by conventional current-meter method.
- USGS, 2018. USGS Cape Fear R at Wilm O Huske Lock NR Tarheel, Current Conditions for the Nation from https://waterdata.usgs.gov/nwis/uv?site_no =02105500
- Weston Solutions Inc., 2018. Fluoromonomers, IXM and PPA Manufacturing Processes Emissions Test Report Test Dates: 22-25 January 2018; The Chemours Company Fayetteville, North Carolina.

Tables

TABLE 1 HFPO-DA RESULTS DURING DRY-WEATHER SAMPLING EVENT Chemours Fayetteville Works, North Carolina

Sample Name	Sample Type	Sample Date and Time	Result (ng/L)
FAY-DRY01-LTW-01	LTW	1/16/2018 4:18 PM	22,000
FAY-DRY01-LTW-02	LTW	1/16/2018 3:28 PM	650
FAY-DRY01-LTW-03	LTW	1/16/2018 2:40 PM	7,400
FAY-DRY01-LTW-04	LTW	1/16/2018 10:10 AM	18,000
FAY-DRY01-LTW-05	LTW	1/16/2018 11:15 AM	37,000
FAY-DRY01-EB-011618	QA/QC - LTW	1/16/2018 4:45 PM	12
FAY-DRY01-SW-DCH-01	Drainage Network	1/16/2018 4:12 PM	75
FAY-DRY01-SW-DCH-02	Drainage Network	1/16/2018 3:40 PM	150
FAY-DRY01-SW-DCH-04	Drainage Network	1/16/2018 4:30 PM	110
FAY-DRY01-SW-DCH-05	Drainage Network	1/16/2018 11:43 AM	110
FAY-DRY01-SW-DCH-07	Drainage Network	1/16/2018 2:15 PM	40 B
FAY-DRY01-SW-DCH-08	Drainage Network	1/16/2018 3:10 PM	220
FAY-DRY01-SW-DCH-09	Drainage Network	1/16/2018 3:20 PM	150
FAY-DRY01-SW-DCH-A	Drainage Network	1/16/2018 4:03 PM	62
FAY-DRY01-EQ-A	QA/QC D. Network	1/16/2018 5:00 PM	<10
FAY-DRY01-SW-002OLD-01	Former Outfall 002	1/16/2018 9:38 AM	8,400
FAY-DRY01-SW-GB-03	Georgia Branch Creek	1/16/2018 10:05 AM	1,100
FAY-DRY01-SW-GB-04	Georgia Branch Creek	1/16/2018 8:48 AM	1,100
FAY-DRY01-SW-GB-04-D	Georgia Branch Creek	1/16/2018 8:48 AM	980
FAY-DRY01-SW-WC-04	Willis Creek	1/16/2018 10:30 AM	83
FAY-DRY01-SW-WC-05	Willis Creek	1/16/2018 10:55 AM	310

Notes:

B - analyte detected in equipment blank at concentration 20% or more than sample result.

D. Network - Drainage Network

HFPO-DA - hexafluoropropylene oxide dimer acid, or Dimer Acid

LTW - Long Term Wells

ng/L - nanogram per liter

QA/QC - quality assuarance/quality control

TABLE 2 HFPO-DA RESULTS DURING WET-WEATHER SAMPLING EVENT Chemours Fayetteville Works, North Carolina

Sample Name	Sample Type	Sample Date and Time	Result (ng/L)
FAY-WET01-EB-012918	QA/QC	1/29/2018 4:00 PM	<10
FAY-WET01-LTW-01-012918	LTW	1/29/2018 8:24 AM	25,000
FAY-WET01-LTW-02-012918	LTW	1/29/2018 9:09 AM	6,600
FAY-WET01-LTW-03-012918	LTW	1/29/2018 3:29 PM	9,900
FAY-WET01-LTW-04-012918	LTW	1/29/2018 11:20 AM	16,000
FAY-WET01-LTW-05-012918	LTW	1/29/2018 10:42 AM	41,000
FAY-D-EB-012918-1	QA/QC - LTW	1/29/2018 4:00 PM	15
FAY-WET01-SW-DCH-01	Drainage Network	1/29/2018 3:10 PM	750
FAY-WET01-SW-DCH-02	Drainage Network	1/29/2018 11:20 AM	2,900
FAY-WET01-SW-DCH-03	Drainage Network	1/29/2018 8:52 AM	4,300
FAY-WET01-SW-DCH-04	Drainage Network	1/29/2018 9:40 AM	3,600
FAY-WET01-SW-DCH-05	Drainage Network	1/29/2018 11:32 AM	2,900
FAY-WET01-SW-DCH-06	Drainage Network	1/29/2018 8:37 AM	1,200
FAY-WET01-SW-DCH-07	Drainage Network	1/29/2018 1:55 PM	140
FAY-WET01-SW-DCH-08	Drainage Network	1/29/2018 4:12 PM	210
FAY-WET01-SW-DCH-09	Drainage Network	1/30/2018 2:00 PM	280
FAY-WET01-SW-DCH-A	Drainage Network	1/29/2018 2:35 PM	220
FAY-WET01-SW-DCH-B	Drainage Network	1/29/2018 8:23 AM	3,300
FAY-WET01-EB-012918	QA/QC - D. Network	1/29/2018 4:00 PM	<10
FAY-WET01-SW-002OLD-01-012918	Former Outfall 002	1/29/2018 10:20 AM	5,700
FAY-WET01-SW-GB-03-012918	Georgia Branch	1/29/2018 11:05 AM	2,000
FAY-WET01-SW-GB-04-012918	Georgia Branch	1/29/2018 10:36 AM	1,100
FAY-WET01-SW-GB-04-D-012918	Georgia Branch	1/29/2018 10:36 AM	1,100
FAY-WET01-SW-WC-04-012918	Willis Creek	1/29/2018 9:40 AM	97
FAY-WET01-SW-WC-05-012918	Willis Creek	1/29/2018 9:05 AM	560 J

Notes:

D. Network - Drainage Network

HFPO-DA - hexafluoropropylene oxide dimer acid, or Dimer Acid

J - sample result estimated

LTW - Long Term Wells

ng/L - nanogram per liter

QAQC - quality assuarance/quality control

Figures

Notes:

- Outfall 002 samples are a combination of 1-day and 3-day composite and grab samples.
- Outfall 002 sample results are from analyses at the on-Site laboratory and Test America.
- Precipitation data plotted is the 24-hour rainfall amount for each day.
- Precipitation data obtained from USGS rain gauge at W.O. Huske Dam.

Acronyms:

- HFPO-DA: Hexafluoropropylene oxide dimer acid; or dimer acid
- ng / L: nanograms per litre
- ppt: parts per trillion
- USGS: United States Geological Survey

- Spent Carbonate Roll-Off Bins Removed
- Soils Excavated Near Cooling Water Channel

Precipitation Data and Outfall 002 HFPO-DA Concentrations Chemours Fayetteville Works, North Carolina

Geosyntec consultants

Guelph March 2018

Figure

3

Sampling Legend:

Historic Outfall Flow Measurements and Sample Collection Georgia Branch Flow Measurements and Sample Collection Willis Creek Flow Measurements and Sample Collection Site Drainage Network Sample Collection LTW Wells Sample Collection

Notes:

- Sampling bars represent the dates and times of sample collection.
- Precipitation data are measured on a 15 minute interval.
- Precipitation data obtained from USGS rain gauge at W.O. Huske Dam. https://waterdata.usgs.gov/nwis/uv?site_no=02105500

Dry-Weather Precipitation Data and Sample Collection Timing Chemours Fayetteville Works, North Carolina Geosyntec consultants Guelph March 2018

Sampling Legend:

Historic Outfall Flow Measurements and Sample Collection Georgia Branch Flow Measurements and Sample Collection Willis Creek Flow Measurements and Sample Collection Site Drainage Network Sample Collection LTW Wells Sample Collection

Rain Water Sample Collection

Notes:

- Sampling bars represent the dates and times of sample collection.
- Precipitation data are measured on a 15 minute interval.
- Precipitation data obtained from USGS rain gauge at W.O. Huske Dam. https://waterdata.usgs.gov/nwis/uv?site_no=02105500

	pitation Data and Sam ours Fayetteville Works, North	
Geosy	ntec	Figure
3.23 \$	N488888888889	10
Guelph	March 2018	, ,

Appendix A Nearby Tributaries Flow Measurements

TABLE A1 VOLUMETRIC DISCHARGE CALCULATIONS AT WILLIS CREEK DURING DRY-WEATHER SAMPLING EVENT Chemours Fayetteville Works, North Carolina

Measurement Point	Distance Along Measured Cross Section	Measured Depth to Water	Measured Depth to Creek Bottom	Calculated Water Column Depth	Calculated Creek Cell Area	Measured Creek Velocity	Calculated Discharge Through Creek Cell Area
	(ft)	(ft)	(ft)	(ft)	(ft ²)	(ft/s)	(ft ³ /s)
Culvert Edge	0	8.11	8.76	0.65	_		_
А	0.5	8.11	8.76	0.65	0.325	0.87	0.28
В	1	8.11	8.74	0.63	0.32	1.01	0.30
С	1.5	8.11	8.78	0.67	0.325	1.09	0.34
D	2	8.11	8.7	0.59	0.315	1.04	0.34
Е	2.5	8.11	8.73	0.62	0.3025	1.05	0.32
F	3	8.11	8.8	0.69	0.3275	1	0.34
G	3.5	8.11	8.69	0.58	0.3175	1.12	0.34
Η	4	8.11	8.7	0.59	0.2925	1.02	0.31
I	4.5	8.11	8.71	0.6	0.2975	1.16	0.32
J	5	8.11	8.75	0.64	0.31	1.1	0.35
K	5.5	8.11	8.73	0.62	0.315	1.13	0.35
L	6	8.11	8.72	0.61	0.3075	1.15	0.35
M	7	8.11	8.72	0.61	0.61	1.15	0.70
N	7.5	8.11	8.79	0.68	0.3225	1.2	0.38
О	8	8.11	8.85	0.74	0.355	1.28	0.44
Culvert Edge	8.5	8.11	8.85	0.74	0.37	_	0.47
ssociated Measure			Acronyms data not measure	d or calculated	(ft	tric Discharge ³ /s) om)	5,93 2,663

Location: Chemours Fayetteville Station: Willis Creek 04 (SW-WC-04)

Date: January 16, 2018 Initial depth to water: 8.11 ft Final depth to water: 8.11 ft

ft - feet ft² - square feet

ft³/s - cubic feet per second gpm - gallons per minute

Notes

- Discharge is calculated as product of creek velocity (feet per second) times the cross sectional area of each measurement cell.
- Measurement cells are calculated using data from previous measurement points. For example measurements from A and B form cell B.
- Measurement cell areas are calculated assuming a trapezoidal geometry.
- Data for culvert edge points are extrapolated from adjacent locations (A and O).

TABLE A2 VOLUMETRIC DISCHARGE CALCULATIONS AT GEORGIA BRANCH CREEK DURING WET-WEATHER SAMPLING EVENT **Chemours Fayetteville Works, North Carolina**

Measurement Point	Distance Along Measured Cross Section	Measured Depth to Water	Measured Depth to Creek Bottom	Calculated Water Column Depth	Calculated Creek Cell Area	Measured Creek Velocity	Calculated Discharge Through Creek Cell Area
	(ft)	(ft)	(ft)	(ft)	(ft²)	(ft/s)	(ft ³ /s)
A	0.6	dry	11.52	dry	-	-	-
В	1.6	dry	11.75	dry	-	-	-
С	2.6	dry	11.83	dry	-	-	-
D	3.6	dry	12.08	dry	_	-	_
Е	4.6	dry	12.48	dry	-	-	-
F	5.6	dry	12.93	dry	-	_	
G	6.6	13.58	13.89	0.31	0.31	-0.1	_
Н	7.6	13.58	14.1	0.52	0.415	-0.12	-
<u>T</u>	8.6	13.58	13.63	0.05	0.285	-0.11	
J	9.6	13.58	13.76	0.18	0.115	-0.01	_
K	10.6	13.58	14.23	0.65	0.415	-0.05	-
L	11.6	13.58	14.82	1.24	0.945	-0.04	-
M	12.6	13.58	14.98	1.4	1.32	0	_
N	13.6	13.58	14.7	1.12	1.26	0.25	0.32
О	14.6	13.58	14.5	0.92	1.02	-0.02	-
P	15.6	13.58	14.42	0.84	0.88	0	-
Q	16.6	13.58	14.02	0.44	0.64	-0.08	-
R	17.6	dry	12.69	dry	-	-	-
S	18.6	dry	12.55	dry	-	-	-
T	19.6	dry	N/A	dry	-	-	-
ssociated Measure ocation: Chemours			Acronyms data not measure	d or calculated	Total Volume (ft (gp		0.32 141

Location: Chemours Fayetteville

Station: Georgia Branch 04 (SW-GB-04)

Date: January 16, 2018

Initial depth to water: 13.58 ft

Final depth to water: 13.58 ft

dry - no water present at measuring point

ft - feet

ft² - square feet

ft³/s - cubic feet per second gpm - gallons per minute

Notes

- Discharge is calculated as product of creek velocity (feet per second) times the cross sectional area of each measurement cell.
- Measurement cells are calculated using data from previous measurement points. For example measurements from F and G form cell G.
- Measurement cell areas are calculated assuming a trapezoidal geometry.
- Discharge calculations do not include values for cells where negative flows were measured.

TABLE A3 VOLUMETRIC DISCHARGE CALCULATIONS AT FORMER OUTFALL 002 DURING DRY-WEATHER SAMPLING EVENT Chemours Fayetteville Works, North Carolina

Measurement Point	Distance Along Measured Cross Section	Measured Depth to Water	Measured Depth to Outfall Bottom	Calculated Water Column Depth	Calculated Stream Cell Area	Measured Stream Velocity	Calculated Discharge Through Outfall Cell Area
	(ft)	(ft)	(ft)	(ft)	(ft ²)	(ft/s)	(ft ³ /s)
A	0.5	dry	10.37	dry	-	-	-
В	1	dry	10.92	dry	-	••	-
С	1.5	dry	11.4	dry			
D	2	dry	11.85	dry			
Е	2.5	dry	12.19	dry	-	•	-
F	3	dry	12.39	dry	-		-
G	3.5	12.35	12.52	0.17	0.0425	0.16	0.01
Н	4	12.35	12.67	0.32	0.1225	0.16	0.02
I	4.5	12.35	12.76	0.41	0.1825	0.38	0.05
J	5	12.35	12.7	0.35	0.19	0.45	0.08
K	5.5	12.35	12.89	0.54	0.2225	1.04	0.17
L	6	12.35	12.76	0.41	0.2375	1.03	0.25
M	7	12.25	12.69	0.44	0.425	0.5	0.33
N	7.5	dry	12.51	dry	0.11	-	0.05
О	8	dry	12.26	dry	-	-	-
Р	8.5	dry	12.09	dry	-	-	-
Q	9	dry	11.98	dry	-	-	-
R	9.5	dry	11.68	dry	-	-	-
S	10	dry	11.62	dry	-		-
T	10.5	dry	11.62	dry	-	-	-
sociated Measure cation: Chemours			Acronyms data not measured	d or calculated		tric Discharge ³ /s) m)	0.95 425

Station: Former Outfall 002 (SW-002OLD-01)

Date: January 16, 2018

Initial depth to water: 12.35 ft

Final depth to water: 12.35 ft

dry - no water present at measuring point

ft - feet

ft² - square feet

ft³/s - cubic feet per second gpm - gallons per minute

Notes

- Discharge is calculated as product of creek velocity (feet per second) times the cross sectional area of each measurement cell.
- Measurement cells are calculated using data from previous measurement points. For example measurements from H and I form cell I.
- Measurement cell areas are calculated assuming a trapezoidal geometry, except cells G and N where a triangular geometry is assumed since N and G were dry measuremnt locations.

TABLE A4 VOLUMETRIC DISCHARGE CALCULATIONS AT WILLIS CREEK DURING WET-WEATHER SAMPLING EVENT Chemours Fayetteville Works, North Carolina

Measurement Point	Distance Along Measured Cross Section	Measured Depth to Water	Measured Depth to Creek Bottom	Calculated Water Column Depth	Calculated Creek Cell Area	Measured Creek Velocity	Calculated Discharge Through Creek Cell Area
	(ft)	(ft)	(ft)	(ft)	(ft²)	(ft/s)	(ft ³ /s)
Culvert Edge	0	6.68	8.76	2.08	-	-	-
Α	0.5	6.68	8.76	2.08	1.04	1.42	1.48
В	1	6.66	8.74	2.08	1.04	1.68	1.61
С	1.5	6.67	8.78	2.11	1.0475	1.56	1.70
D	2	6.67	8.7	2.03	1.035	1.84	1.76
Е	2.5	6.67	8.73	2.06	1.0225	1.88	1.90
F	3	6.68	8.8	2.12	1.045	1.94	2.00
G	3.5	6.67	8.69	2.02	1.035	1.82	1.95
Н	4	6.67	8.7	2.03	1.0125	1.8	1.83
I	4.5	6.67	8.71	2.04	1.0175	1.88	1.87
J	5	6.68	8.75	2.07	1.0275	1.63	1.80
K	5.5	6.67	8.73	2.06	1.0325	1.69	1.71
L	6	6.65	8.72	2.07	1.0325	1.44	1.62
M	7	6.65	8.72	2.07	2.07	1.28	2.82
N	7.5	6.67	8.79	2.12	1.0475	1.6	1.51
0	8	6.67	8.85	2.18	1.075	1.54	1.69
Culvert Edge	8.5	6.67	8.85	2.18	1.09	-	1.68
sociated Measura	ement Notes		Acronyms			tric Discharge ³ /s)	28.92

Location: Chemours Fayetteville Station: Willis Creek 04 (SW-WC-04)

Date: January 29, 2018 Initial depth to water: 6.68 ft

Final depth to water: 6.67 ft

-- - data not measured or calculated

dry - no water present at measuring point

ft - feet

ft² - square feet

ft³/s - cubic feet per second gpm - gallons per minute

Notes

- Discharge is calculated as product of creek velocity (feet per second) times the cross sectional area of each measurement cell.
- Measurement cells are calculated using data from previous measurement points. For example measurements from A and B form cell B.
- Measurement cell areas are calculated assuming a trapezoidal geometry.
- Data for culvert edge points are extrapolated from adjacent locations (A and O).

12,979

(gpm)

TABLE A5 VOLUMETRIC DISCHARGE CALCULATIONS AT GEORGIA BRANCH CREEK DURING WET-WEATHER SAMPLING EVENT **Chemours Fayetteville Works, North Carolina**

Measurement Point	Distance Along Measured Cross Section	Measured Depth to Water	Measured Depth to Creek Bottom	Calculated Water Column Depth	Calculated Creek Cell Area	Measured Stream Velocity	Calculated Discharge Through Creek Cell Area
	(ft)	(ft)	(ft)	(ft)	(ft²)	(ft/s)	(ft ³ /s)
Α	0.6	dry	11.52	dry	-	-	_
B	1.6	dry	11.75	dry	-		-
С	2.6	dry	11.83	dry	-		-
D	3.6	dry	12.08	dry	-	-	-
Е	4.6	dry	12.48	dry	-		-
F	5.6	13.1	12.93	dry	-	-	-
G	6.6	13.25	13.89	0.64	0.64	-0.07	-
Н	7.6	13.27	14.1	0.83	0.735	-0.1	-
I	8.6	13.25	13.63	0.38	0.605	-0.02	-
J	9.6	13.22	13.76	0.54	0.46	-0.07	-
K	10.6	13.2	14.23	1.03	0.785	0.25	0.20
L	11.6	13.24	14.82	1.58	1.305	0.46	0.46
M	12.6	13.22	14.98	1.76	1.67	0.31	0.64
N	13.6	13.23	14.7	1.47	1.615	0.22	0.43
О	14.6	13.22	14.5	1.28	1.375	-0.12	0.07
P	15.6	13.23	14.42	1.19	1.235	0.07	0.09
Q	16.6	13.23	14.02	0.79	0.99	-0.12	_
R	17.6	dry	12.69	dry	-		-
S	18.6	dry	12.55	dry	_		-
sociated Measure	ement Notes		Acronyms			tric Discharge ³ /s)	1.89

Associated Measurement Notes

Location: Chemours Fayetteville

Station: Georgia Branch 04 (SW-GB-04)

Date: January 29, 2018

Initial depth to water: 13.58 ft

Final depth to water: 13.58 ft

Acronyms

-- - data not measured or calculated

dry - no water present at measuring point

ft - feet

ft² - square feet

ft³/s - cubic feet per second gpm - gallons per minute

Notes

- Discharge is calculated as product of creek velocity (feet per second) times the cross sectional area of each measurement cell.
- Measurement cells are calculated using data from previous measurement points. For example measurements from G and H form cell H.
- Measurement cell areas are calculated assuming a trapezoidal geometry.
- Discharge calculations do not include values for cells where negative flows were measured.

846

(gpm)

TABLE A6 VOLUMETRIC DISCHARGE CALCULATIONS AT FORMER OUTFALL 002 DURING WET-WEATHER SAMPLING EVENT **Chemours Fayetteville Works, North Carolina**

Measurement Point	Distance Along Measured Cross Section	Measured Depth to Water	Measured Depth to Outfall Bottom	Calculated Water Column Depth	Calculated Outfall Cell Area	Measured Outfall Velocity	Calculated Discharge Through Outfall Cell Area
	(ft)	(ft)	(ft)	(ft)	(ft²)	(ft/s)	(ft ³ /s)
Α	0.5	dry	10.37	dry	-		-
В	1	dry	10.92	dry	-	-	-
С	1.5	dry	11.4	dry	-		<u></u>
D	2	dry	11.85	dry	-	ee	-
Е	2.5	dry	12.19	dry	-		-
F	3	12.23	12.39	0.16	0.04		
G	3.5	12.23	12.52	0.29	0.1125	-0.15	-0.02
Н	4	12.25	12.67	0.42	0.1775	0.75	0.05
I	4.5	12.26	12.76	0.5	0.23	1.44	0.25
J	5	12.28	12.7	0.42	0.23	1.26	0.31
K	5.5	12.28	12.89	0.61	0.2575	1.52	0.36
L	6	12.28	12.76	0.48	0.2725	1.41	0.40
M	7	12.3	12.69	0.39	0.435	0.48	0.41
N	7.5	12.37	12.51	0.14	0.1325		0.06
O	8	12.4	12.26	-0.14	0		-
Р	8.5	dry	12.09	dry	-	-	-
Q	9	dry	11.98	dry	-	-	-
R	9.5	dry	11.68	dry	-		_
S	10	dry	11.62	dry	-	-	-
T	10.5	dry	11.62	dry	-	-	-
sociated Measure	ement Notes		Acronyms	Reconsection (1997)		tric Discharge ³ /s)	1.85

Location: Chemours Fayetteville

Station: Former Outfall 002 (SW-002OLD-01)

Date: January 29, 2018 Initial depth to water: 12.3 ft

Final depth to water: 12.3 ft

-- - data not measured or calculated

dry - no water present at measuring point

ft - feet

ft² - square feet

ft³/s - cubic feet per second gpm - gallons per minute

Notes

- Discharge is calculated as product of creek velocity (feet per second) times the cross sectional area of each measurement cell.
- Measurement cells are calculated using data from previous measurement points. For example measurements from H and I form cell I.
- Measurement cell areas are calculated assuming a trapezoidal geometry, except cells G and N where a triangular geometry is assumed since N and G were dry measuremnt locations.
- Negative flow data from Measurement Point G is not included in discharge calucations. Water was too shallow at measurement point F to submerge flow meter.

829

(gpm)

Georgia Branch Creek Flow Measurement Location

Chemours Fayetteville Works, North Carolina

Figure **A1**

Guelph

Former Outfall 002 Flow Measurement Location

Chemours Fayetteville Works, North Carolina

Geosyntec consultants

Figure

A2

Guelph

Willis Creek Flow Measurement Location

Chemours Fayetteville Works, North Carolina

Geosyntec consultants

А3

Figure

Guelph

Conceptual Schematic of Flow Measurement at Former Outfall 002

Chemours Fayetteville Works, North Carolina

Geosyntec consultants

Figure **A4**

Guelph

Appendix B LTW Well Field Parameter Data

Site: LHEM	wrs FAY	E	vent: 🚣	OW-FL	OW GWS		Date:	01.16.18	Time:	1550	7
Personnel: 1	1) 4 CB	***************************************	andre exception of the second second		Projec	t Mana	iger: 1	RACEY	OUBEY	,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,	**************************************
Well ID: <u>L</u>]		P					ipors: //	DIFID BZ:			
Weather Co	nditions:	Clear	П(loudy.	Other	Πy	Vind:	DÍFID CA:	lemp: \$.	<u> </u>	ρĦ
Well Depth:	26'		I	NAPL:			Purge	Method:	PERRY PU	r) f	
Depth to Wa		,		NAPL:			Purge	Start: 166	,4		
Water Colur				asing D	ia: _2		Purge	Stop: .14.1	<u> </u>	*************	
Well Vol:					tor:		Param	eter Colle	etion Time:	s ·	
Well Vol (3x)* 		P	urge Ra	te: <i>200</i>		Water	Level Sta	ble @: <i>11</i> 15	\$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DTV		17.37		7,44	17.45	17.40	•		agentitititatiinin on titoi on	ya	ucionanannii annazari
Param		1000	1	607	16\$2	1615			Sample	Ana	ysis Time
pH		3 \$5	3	\$3	3.53	356					
Temperature (*(")	17.58	1	7,41	17.53	17.55					
Specific Conduc	stance (umho)	0.136	Ø	139	0.139	0:138					
Dissolved Oxyg	en (mg/l)	0.85	U	. 73	0.61	û 61					
Redox (mV)	*	511	S	; <i>4</i> 7	S 15	497					
Turbidity (ntu)		19.2	2	5.3	20.7	12.0					
Color		CLEAR		LEAR	CLEAR	ULEA					
Odor	ericiología (incentido esculparativo proporto de el constitución de el constitución de el constitución de el c			Sa San San San San San San San San San S		N. J. W. Control		2			
Audysis	Volume (m)	0 4	Preser	vative	Zero HS	Commer	is:				
								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
				•							
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
Analyst Nan Analyst Sign										20	1650

Site: LHEN	10VRS FI	<u>9y </u>	Vent	:Low-EL	OW GWS		_ Date	: 01.16.18	Time:	1507
Personnel: 1	10 + 4B		***************************************		Projec	t Man	ager:	TRACEY O	VBEY	<u> </u>
Well ID: 11	W-02	P	ermi	t No:		VO V	apors:	PIDIFID BZ:	***************************************	
Weather Co.	nditions: 🎉	Clear	I	[]] Cloudy	Other		Wind:	PIDIFID CA:	Temp: 5	0 °F
Well Depth:	38		~~~~	LNAPL:	<u></u>		Pur	e Method: .	PERRY PU	MP
Depth to Wa				DNAPL:		~~~		e Start: <u>12</u> 1		
Water Colur								e Stop: _152		
Well Vol:					tor:			meter Colle	ction Time:	ė •
Well Vol (3x					te: 2 <i>4</i> 0		Wate	er Level Stal	sle @: <i>10.1</i>	1
, Dr.	*	10.20	, .			10.10				
Paran		1515		<i>i</i> 5/8	1521	152	.4		Sample	Analysis Time
pH		4.77		4.77		4.67				
Temperature (°C	?)	17.92	eccessoros socor	13.10	14.11	180				
Specific Conduc		oğumummini ü liri		343 0.063				***************************************	***************************************	
Dissolved Oxyg	nananananananananananan	5.42	38.2.Q.	5.15	5.20	4,48				
Redox (inV)	annante con anno con con connante anno anticon con	344	scobberoonnoonlookk	364		399	******************			
Turbicity (atu)		6.1		3.5	1.0	1.0				•
Color	access along the property of the section of the sec	CLEA	2			٠ سـ ا	~ .			
Odor	en e	Lecui				 				
Sample Date					ilection Tin	ne: 1 5	23	Sam	ple Method	*
Anaiysis	Volume (m)) #	Pro	servative	Zero HS	Comme	nts:	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

									processor constitution	
							***************************************	····		
					•••••				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		1								
							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		***************************************	
			****************					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
					<del>-</del>					
				······································		*****				
									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			*****			******************				
						*****************	***************************************		<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>	
Analyst Nam						noneightine				20650
Analyst Sign	ature:					Da	te:		<u></u>	~~~~

Site: LHEM	JURS FAY	'E	vent: <u>Lov-PLo</u>	W GWS	Date	: Ol. 16.18	Time:	1420
Personnel:	10 4 CB	7		Pmjec	t Manager:	TRACEY OF	LBFY.	
Well ID: LI	w-03	P	ermit No:		. VO Vapors	PIDIFID BZ:		
Weather Co	nditious: 🎉	Clear	□ Cloudy	Other	O Wind:	PIDIFID CA	Temp: 5	o F
Well Depth:	30	35,511.00 <b>0.000</b> 0000000000000000000000000000	LNAPL:		Pur	ge Method: 1	PERRY PUP	1 <i>P</i>
			DNAPL:			ge Start: <u>/4</u> 2	100	••••
Water Colur	nn:		Casing D	ia:	Pur	ze Stop: <u>194</u>	0	
Well Vol:				cor:		imeter Colle		<b>3</b> 2
Well Vol (3x	) <b>:</b>	~~~	Purge Ra	ite: 200		er Level Stal	ole @:_ <b>.i</b> 3:	17
DTV		13.35	13.42	13.45	13.47		yanas atau saada ada da aa saada ada aa saada a	
Param		1430	1433	1436	1439		Sample	Analysis Time
pH		4.66	4.62	4.34	4,40			
Temperature (°C	7)	20.83		20.57	26.33			
Specific Conduc	stance (umho)	0.097	0.016	0.096	0.091			
Dissolved Oxyg	en (mg/l)	1,45	0.70	0.52	0.45			
Redox (mV)	ragga a control de con	315	aanaanaanaanaanaanaahaanaanaanaanaahaanaan	320	324		4,111	
Turbidity (ntu)		50.4	49.0	47.4	47.2			
Color	~~~~~~ <del>~</del>	No. Commonweapon	BRJWJ ·		- * - *			<b></b>
Odor		L+Call !	3/10/9		<del></del>			••••
Sample Date Analysis	Volume (m)	occoconigonii domana	Sample C Preservative	ollection Tir	ne: 1440 Comments:		ole Method	8
						•••••		<u></u>
	•							
	even			•				
	·····							**************************************
······································				***************************************				·
	# 0000 0000 0000 0000 0000 0000 0000 0	<del></del>		<del>-</del>				
								· · · · · · · · · · · · · · · · · · ·
							<b>vene</b>	,,
					00000000000000000000000000000000000000	***************************************		
-								20650
Analyst Sign	ature:		······································		Date:			ムしひひひ

		Eve			Date			
Personnel:	TO + CB	····		Projec	t Manager: _	TRACEY I	OVBEY	·
Well ID:	TW-04	Per	mit No:		.VO Vapors:			
Weather Co.	nditious: 🔣	Clear	□ Cloudy	Other	U Wind:	PIDIFID CA:	Temp: 7	24 ·F
Well Depth:	27'					e Method: J		UMP
Depth to Wa						e Start: <u>94</u> 8		·····
Water Colur	1111;		Casing D	ia: <u>2</u> "	Purg	e Stop: <del>Jeë</del>	<del>e eiù</del> lo	90
Well Vol:		,,,						: 09\$1- 1000
Well Vol (3x	<b>)</b> :			ite: 2 <i>00 ml</i>	<u>Zain</u> Wate	r Level Stab	le @:_ <i>IL</i> :	80
DTW	COLUMN TO THE	,10,23	10.95	11.90	11.80	······································	era eria era da era era da era era era era era era era era era er	angaine in indicatain an ini ann in indicatain an ann an in
Param	eters	0951	0954	0957	1000		Sample	Analysis Time
pH		4.31	3.74	3.5)	3.4]			•
Temperature (°C		11.50	12.09	12.51	12.6)		adatericano renon carrono como con cara	
Specific Conduc	tance (umho)	0,124	0.128	0.130	0.124			
Dissolved Oxyg	en (mg/l)	2.83	1.26	0.17	0.78			
Redox (mV)	*	402	462	482	445			
Turbidity (ntu)		26.7		30.1	31.3			
Color		CLEAR		CLEAR	CLEAR			
Odor	••••		•					
Sample Date  Analysis	: <i>DL16.13</i> Volume (m)		Sample Co		ne: 1010 Comments:	Samp	le Method	\$
7,000,000	s 432822300 4 ccts		4 36:301 73014 10	2.0011	% 934 433 4 436 4 7 ·			
					>>>>		***************************************	
	-					,		
	,,;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;				,			
					upusu excresseere erecente er		*******************************	
								·····
	manifestation (m. 1995)						······	
							· · · · · · · · · · · · · · · · · · ·	
	<u></u>							
					·······	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*******************************	
Analyst Nam	ie:			waanaanaanaanaanaanaan oo isoo oo oo dhiisi isoo dh				nnorn
Analyst Sign	ature:				Date:			20650

Well ID: LTW-33  Weather Conditions:  Well Depth: 40' Depth to Water: 10.  Water Column:  Well Vol:  Well Vol:  Well Vol (3x):  Parameters  pH  Temperature ("C)  Specific Conductance (amb Dissolved Oxygen (mg/l)  Redox (mV)  Turbidity (ata)  Color  Odor  Sample Date: 01-44.	Clea  10  10  10  10  10  10  10  10  10  1	107 22 246 27 27 27 31	Cloudy  LNAPL: DNAPL: Casing I Conv. Fa Purge R: 10.33	Other  Dia: 2" ctor: ate: 220 au 10.25 1103 3.43 14.53	Pu Pu Pu Pu Va	i:  rge Method: rge Start: 116 rge Stop: 116 rameter Colle	Temp:  SERRY /  2  ction Time	36 F
Well Depth: 40' Depth to Water: 10. Water Column: Well Vol: Well Vol: Well Vol (3x); Parameters pH Temperature ("C) Specific Conductance (unth Dissolved Oxygen (mg/l) Redox (mV) Turbidity (ntu) Color Odor	10 10 3 5 16 8 0 1 5 3 7 5 17 1.7 CLE	1	LNAPL: DNAPL: Casing I Conv. Fa Purge R 10.33 110.5 3.53 16.45 0.176 4.80 5.22	)in: 2" ctor: nte: 220 m  10:35  11:07  14:53  0:179  4:05  5:20  1:0	Pu Pu Pu Pu Pa 12.83 111 3.86 16.84 6.176 2.87 49.2	rge Method: rge Start: 114 rge Stop: 114 rameter Colle	<i>f 582Y   Pi</i> <b>3</b> 1 ection Time ble @: <i>12</i> .8	<i>ynp</i> :
Pepth to Water: 12. Vater Column: Vell Vol: Vell Vol: Vell Vol (3x): OTV Parameters pH Temperature (°C) Specific Conductance (unith Dissolved Oxygen (mg/l) Redox (mV) Turbidity (ntu) Color Odor	10 10 10 3 5 16 0 5 3 5 17 12 CLE	67 2 16 72 1	DNAPL: Casing I Conv. Fa Purge R: 10.83 1105 3.57 16.45 0.176 4.80 522 1.8	Sin: 2" ctor: nte: 220 m 10.25 1103 3.49 16.53 0.179 4.05 526 1.0	Pui Pui Pai L/m Wa 10.83 IIII 3.46 16.84 0.176 2.87 49.2	rge Start: <i>114</i> rge Stop: <i>114</i> rameter Colle	ø ⁄ :ction Time ble @: 1¢.5	*
Pepth to Water: 12. Vater Column: Vell Vol: Vell Vol: Vell Vol (3x): OTV Parameters pH Temperature (°C) Specific Conductance (unith Dissolved Oxygen (mg/l) Redox (mV) Turbidity (ntu) Color Odor	10 10 10 3 5 16 0 5 3 5 17 12 CLE	67 2 16 72 1	DNAPL: Casing I Conv. Fa Purge R: 10.83 1105 3.57 16.45 0.176 4.80 522 1.8	Sin: 2" ctor: nte: 220 m 10.25 1103 3.49 16.53 0.179 4.05 526 1.0	Pui Pui Pai L/m Wa 10.83 IIII 3.46 16.84 0.176 2.87 49.2	rge Start: <i>114</i> rge Stop: <i>114</i> rameter Colle	ø ⁄ :ction Time ble @: 1¢.5	*
Vater Column: Vell Vol: Vell Vol (3x): Of v Parameters off Temperature (°C) Specific Conductance (units Dissolved Oxygen (mg/l) Redox (mV) Furbidity (mu) Color Odor ample Date: 0/4/	10 10 3 5 16 3 0 1 5 3 5 17 1.7 CLE	67 2 16 72 2	Casing I Conv. Fa Purge Rs 10.33 110.5 3.5.7 16.45 4.80 5.22 1.8	Sin: 2"  stor:  ate: 220 au  10.95  110.9  5.49  10.53  0.179  4.05  526	Pul Pai 10.83 1111 3.46 16.84 6.176 2.87 49.2	rge Stop: <u>11</u> ameter Colle	/ :ction Time ble @: /2:2	Ž
Vell Vol: Vell Vol (3x): ATW Parameters OH Femperature ("C) Specific Conductance (umb Dissolved Oxygen (mg/l) Redox (mV) Furbidity (ntu) Color Odor  ample Date: 01-44.1	10 110 3 3 16 3 9 0 1 5 3 5 17 1.2 C L E	107 2 2 146 173 13	Conv. Fa Purge Ro 10.33 110.5 3.57 16.45 0.174 4.80 5.22 1.8	ctor: ate: 220 A  10.25  11.07  3.44  14.53  0.179  4.05  520  1.0	Pai 10.85 1111 3.86 16.84 0.176 2.84 492 1-1	ameter Collo	ction Time ble @: 102	Ž
Vell Vol (3x):  ()	10 110 3 5 160 0 1 5 3 5 17 1.7 C L E	63 2 7 46 73 2	Purge Ri 10.83 1105 3.57 16.45 0.176 4.80 5.22 1.8	10.85 11.03 13.49 16.63 0.179 4.05 526 1.0	10.83 1111 3.86 16.84 0.176 2.87 492 1-1		ble @: <i>10</i> .2	35
Parameters off  Pemperature (°C)  Specific Conductance (umb Dissolved Oxygen (mg/l)  Redox (mV)  Furbidity (ntu)  Color  Odor  ample Date: 0.44.	10 110 3 5 160 0 0 1 5 3 2 5 17 1.2 C L E	67 2 1 16 72 7	10.83 1103 3.57 16.45 0.176 4.80 5.22 1.8	10.25 1108 3.44 14.53 2.179 4.05 \$2.6	10.85 1111 3.96 16.84 6.176 2.87 492 1-1		•	
Parameters oH  Temperature (°C)  Specific Conductance (umb Dissolved Oxygen (mg/l)  Redox (mV)  Parhidity (mu)  Color  Odor  ample Date: 01.44.1	110 3 5 163 0.1 53 517 12 CLE	2 7 16 72 73	1105 3.57 16.45 0.174 4.80 522 1.8	1108 3.49 16.53 0.179 4.05 520 1.0	1111 3.46 16.54 6.176 2.87 492 1-1		Sample	Analysis Time
oli Temperature (°C) Specific Conductance (amb Dissolved Oxygen (mg/l) Redox (mV) Furbidity (am) Color Odor ample Date: 0/4.	3 5 160 0 0 1 5 3 - 5 17 1.2 - CLE	146 149 1	3.57 16.45 0.176 4.80 522 1.8	3.44 4.53 2.179 4.05 526 1.0	3.46 16.84 6.176 2.87 492 1-1			
Temperature (°C)  Specific Conductance (umb Dissolved Oxygen (rng/l)  Redox (mV)  Furbidity (mu)  Color  Odor  ample Date: 0/4.	163 0.1 53 517 1.2 CLE	16 72 1	16.45 0.176 4.80 522 1.8	16.63 0.179 4.05 526 1.0	16.54 6.176 2.87 492 1-1			
Specific Conductance (omb Dissolved Oxygen (mg/l) Redox (mV) Furbidity (ntu) Color Odor ample Date: 01-44.)	) 0.1 53 517 1.2 CLE	7-3 '1 '2 '28&	0.176 4.80 522 1.8	0.179 4.05 \$20 1.0	6.174 2.87 492 1.1			
Dissolved Oxygen (mg/l) Redox (mV) Furbidity (mu) Color Odor ample Date: 01-4.1	53 517 1.2 CLE	<u> </u>	4:80 532 1:8	4.05 526 1.0	287 492 1-1			
Redox (mV) Purbidity (mu) Color Odor ample Date: 0/4.	517 1.2 CLE	AS	522 1.8	\$26 1.0	41Z 1-1			
Purhidity (ntu) Color Odor ample Date: 01-4	1.2 CLE	AS	1.8	1.0	1.1			•
Color Odor Sampie Date: 0/4/	CLE	AS		and the state of t				engana arang arang managana arang
ample Date: 01-44.1		***************************************	L'EAX	CLEAR	LUEAK			1
ample Date: 💇 💯	3							•
	mi)	<b>V</b> 1	Preservative	Zero HS	Comments:			······································
					0,00,000			***************************************
					W			
							***************************************	
								***************************************
					·····		~	
							:: :	
						**************************************		na n
							······································	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u></u>	***************************************	nones de la constante de la co		
inalyst Name:								a de la companya de

site: Tay Herille	<u>.                                    </u>	Svent	:_Sanac	u sha	M Hooste	: 11291	18 Time.	6745
Personnel: HL	LYLE	5+		Proie	ct Mañager:_	T. O.	Devi	
Well ID: LTN-(	<u>51 ' i</u>	'ermi	t No:		_VO Vapors:	PIDIFID BZ		
Weather Conditions			Cloudy		O Wind:	PIDIFIO CA:	Temp: 3	50 E
Well Depth:	•		LNAPL:		Purg	e Method	: 10w-floc	<i>ാ</i> റാന്
Depth to Water:	16.61	editecensolic	DNAPL:		Purg	e Start:	<i>0</i> 500	
Water Column:			Casing Di	a: A h	Purg	e Ston:	V880	
Well Vol:			Conv. Fac	tor:	Para	meter Col	lection Time	: 0824
Well Vol (3x):			Purge Ra	le: <u>100</u> m	Vail Wate	r Level St	able @:/(	0.96
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	090	S	<u> </u>		6894	grane room room beauty	4.	
Parameters 📉				16.96			Sample	Analysis Time
pH	<b>3</b> .3	U	3.40		3.20			
Temperature (*C)	ا. ۵۵	08	19.72	19.14	18.74			
Specific Conductance (umi		•	0.146	6.135		···		
Dissolved Oxygen (mg/l)	3.8		0.96	0.75	0.69	******************************		***************************************
Redox (mV)	352	M	420	458	45479	***************************************	<u> </u>	
Turbidity (ntu)	94.	Market Service Comments	74.9	142.9	20.9		***************************************	
Color	11.3		17.tan	14. Fan	Cloar			
Odes	, i	•	No.	No	No			Marianana America (m. 1919)
Analysis Volume	(m) 7	Pro	servative	Zero HS	Comments:			
Analyst Name: Ho	ingh Hul	Thou	Ž.		Date:	1129 Jr	8	20650

Site: <u>Faul</u> Personnel:	Houle	E	ent:	Junuar	u Sha	a HaO Date		Time:	0840
Personnel:					Projec	t Manager:	T.0	N001/	•
Well ID:	10-02	Po	rmit	No:		. VO Vapors:	PIDIFID BZ: _	<u>' O .</u>	0
Weather Cor				Cloudy		*	BUREAU CA.		$\circ$
Well Depth: . Depth to Wa	. 97	ol o	***************************************	LNAPL:_	***************************************	Purg	e Method:	1002-Plou	2 <b>0</b> ,0
			>>>00000	DIVATLI	211	Purg	e Start:	<u> </u>	***************************************
Water Colum			Matana and and a	Came Fast	1: <u>.                              </u>	rurx Pora	e swy; aratan Cali		. <i>n9</i> /29
Well Vol (3x)				Purge Rati	· /sb		r Lavel Si	able @:9	. 84
FICE YOU (JA)	f*	০%ত্য		0859	0904	09 <i>0</i> 9	1 8/6/4/3 (38	\$31845 \C' \	
Param	eters DNO	9.80		9.84	931	9.84	er de verse e ee ee stad Stadende gebruikele.	Sample	Analysis Time
Her	VIW	4.17	4	4.35	4.35	4.34			
Temperature (°C	```	15.7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	16.00	16.19	16.15	marconing of the second		
Specific Conduc		0.08		0.079	850.0	0.078			
Dissolved Oxygi	occomica commissione en description de la commission de la commission de la commission de la commission de la c	3.95		1.59	1.10	0.74	***************************************	***************************************	•
Redox (mV)		322	·····	294	284	J79			· · · · · · · · · · · · · · · · · · ·
Terbidity (atu)	,	0.0	<del>-</del>	0.0	0.0	0.0			<b>************************************</b>
Color		Clear		Clear	Clace	Clock			
Odur		601		No	No	i i i		<u> </u>	***************************************
Analysis	Volume (ml	2   #	Pros	servalive	Zem HS	Comments:	***************************************	***************************************	
					······································				
						War Alas	`\/	724	<u> </u>
				· · · · · · · · · · · · · · · · · · ·		***************************************			
		•					***************************************		
			*************				·····	***************************************	
Analyst Nam Analyst Signs	· /	ngh Hul	4	20 mi		Date;	109/15		20650

	Yettevill	Ľ E	vent:	Januar	y Storm	V~V [#] Date:	1124/1	<b>Y</b> Time:	177/
Personnel: ,	¥				Proje	ct Manager: _ _VO Vapors: □xv:	Truy	Oube	<u> </u>
Well ID: <u></u>	JU-03	<b>!</b> p	'ermi	l No:	······	_VO Vapors:	PIDIFID BZ.		***************************************
Weather Co	nditions: 🗀	Clear	Z	Cloudy	Other		PIDIPID CI:	Temp:	52 °F
Well Depth: Depth to Wi		$\epsilon$	··········	LNAPL:_		Pirg	e Method e Start: 15	7 /4 f/0	u fari
Depth to Wa	ner: <b>k4=_</b> .1			DNAPL:		Purg L Purg	e Start: 12	<del>'</del>	***************************************
vvacer Color Well Vol:						Lruf%	e Swp: <u>12</u> neter Colle		. 1534
Well Vol (3x						VZZZX.Wate	ncui Cinc r Kaval Stal	ve a. 12.	81
8 3 <b>6</b> 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	§ *	<i>l</i> \$1	4	1514	1524	1529		ero von graden	<b>*</b>
Param	nelers DIV	agains an ag Miggaran an an an Airig	general construction and	12,75	12.79	12. 905		Sample	Analysis Time
pH	X	4.1	<b> </b>	4.03	1.47	3.88			· · · · · · · · · · · · · · · · · · ·
Temperature (°C	<b>~</b> }	16 6	١ ٦	15.03	4, 44	14.45			
Specific Conduc	ctance (umho)	0.1	<b>794</b> .	,0,092	0.091	0.091		······································	
Dissolved Oxyg	en (mg/l)	2.6	4	1.00	0.85	19.95	•••••		
Redox (mV)		311		248		301			
Turbidity (mu)		0.0		0.0	2,49	232		•••••••••••	
Color	***************************************			Cloudy	Cloudy	Clear			
Odor		No	****	No	No	No	4		
						me: 1526			0.0000000000000000000000000000000000000
Analysis	Volume (m)	)   #	Pre	servalive	Zero HS	Comments:			***************************************
Analysis	Volume (m)	) #	Pre	scryalive					
Analysis	Volume (ml	)	Pro	scrvative					
Analysis	Volume (m)		Pre	servative					
Analysis	Volume (ml	) 4	Pre	servative					
Analysis	Volume (m)	)   4	Pre	servative					
Analysis	Volume (m)	) 4	Pre	servative					
Analysis	Volume (m)	) #	Pre	servative					
Analysis	Volume (m)		Pre	servative					
Analysis	Volume (rel	) #	Pre	servative					
Analysis	Volume (m)		Pre	servative					
Analysis	Volume (m)		Pre	servative					
Analysis	Volume (m)		Pre	servative					
Analysis	Volume (m)		Pre	servative					
Analysis	Volume (m)		Pre	servative					
Analysis  Analysis  nalyst Nam  nalyst Signe	e: Chu	1/65							20650

Well ID: Permit No: Weather Conditions: □ Clear	Projection: Journal of the Control o	ct Manager:VO Vapors:Vind:PurgPurgPurgParan	PIDIFID BZ. PIDIFID CA:  PIDIFID CA:  E Method: 1  E Start: 11  E Stop: 112	Oubey Temp: 4 Owflo	50 °F W ρωνί
Well ID:	Other  Dia: 2 14  Carrier 550  1465  1504  3.37  15.13  0.111  0.57  4 763	VO Vapors:  Vind:  Purg. Purg. Purg. VA Wate VO  VS  VS  VS  VS  VS  VS  VS  VS  VS	PIDIFID BZ: PIDIFID CA:  e Method: e Start: 112	Temp: 4  OW flo  Ol  Ol  ction Time title @: []:	50 ·F ω ρω·ί :1120
Well Depth: LNAPL: Depth to Water: 2.31 DNAPL: Water Column: Casing D Well Vol: Conx. Fac Well Vol (3x): Purge Ra  Parameters DTV 9.19 D.16  PH 3.81 3.41 Temperature (°C) [5.48 [5.44] Specific Conductance (umino) 0.12 0.11	Other  Dia: Z iv  ctor: 150  10,44  3.37  15.13  0.11  0.59  4 763	Purg Purg Purg Purg Purg Purg Vivas IVO 4.57 5.33 I5.21 O.10	e Method: 1 e Start: 11 e Stop: 112	Temp: 4  OW flo  Ol  Col  ction Time tale @: [1:	50 ·F ω ρω·ί :1120
Well Depth:         LNAPL:           Depth to Water:         9.39         DNAPL:           Water Column:         Casing D           Well Vol:         Conv. Fac           Well Vol (3x):         Purge Ra           Parameters         I/OT         I/OT           PH         3.81         3.41           Temperature (°C)         [5.48         [5.41           Specific Conductance (umino)         0.12         0.11	)ia: 2 19 ctor: 150 1015 1019 1019 15.13 15.13 15.13 15.13 15.13 15.13 15.13 15.13 15.13 15.13	Purg Purg Purg Para D'V/6'Wate 1020 13.57 3.33 15.21 0.10 0.51	e Method:   e Start: e Stop:	owflo Ol O ction Time ble @: [L	w puri
Well Depth:         LNAPL:           Depth to Water:         9.34         DNAPL:           Water Column:         Casing D           Well Vol:         Conv. Fac           Well Vol (3x):         Purge Ra           Parameters         DW         9.19         0.16           pH         3.81         3.41           Temperature (°C)         [5.48         [5.41           Specific Conductance (umino)         0.12         0.11	Dia: Z 18 octor: 150 1105 15.13 15.13 10.411 10.59	Purg Purg Purg Para D'V/6'Wate 1020 13.57 3.33 15.21 0.10 0.51	e Method:   e Start: e Stop:	owflo Ol O ction Time ble @: [L	:440
Depth to Water:         J.J.         DNAPL:           Water Column:         Casing D           Well Vol:         Conv. Fac           Well Vol (3x):         Purge Ra           105         106           Parameters         9.19         10.10           pit         3.81         3.41           Temperature (°C)         5.43         5.41           Specific Conductance (umino)         0.12         0.11	Dia: Z 18 octor: 150 1105 15.13 15.13 10.411 10.59	Purg Purg 2 N/Ai Wate 1120 11.57 3.33 15.21 0.10 0.51	e Start: <b>41</b> e Stop: <b>442</b>	C/ O ction Time ble @: //	:440
Water Column:         Casing D           Well Vol:         Conv. Fac           Well Vol (3x):         Purge Ra           IOT         NO           Parameters         OV         9.19         10.16           pH         3.81         3.41           Temperature (°C)         [5.48         [5.49           Specific Conductance (umino)         0.42         0.41	ia: 2 iv ctor: 150 1,115 1,105 1,064 1,337 15.13 15.13 10.11 10.59 4 163	Purg Purg 2 N/Ai Wate 1120 11.57 3.33 15.21 0.10 0.51	e Start: <b>41</b> e Stop: <b>442</b>	C/ O ction Time ble @: //	:440
Water Column:         Casing D           Well Vol:         Conv. Fac           Well Vol (3x):         Purge Ra           IOT         NO           Parameters         OV         9.19         10.16           pH         3.81         3.41           Temperature (°C)         [5.48         [5.49           Specific Conductance (umino)         0.11         0.11	ctor: 1/15 10,44 3.37 15.13 0.11 0.59 4.63	2 M/minyate 1020 4.57 5.33 15.21 0.10 0.51	e Stop: 112 meter Colle r Level Stal	ction Time ble @: <b>/l</b> :	·
Well Vol:         Conv. Fac           Well Vol (3x):         Purge Ra           105         105           Parameters         1010           pH         3.81         3.41           Temperature (°C)         5.48         5.41           Specific Conductance (umino)         0.12         0.11	ctor: 1/15 10,44 3.37 15.13 0.11 0.59 4.63	2 M/minyate 1020 4.57 5.33 15.21 0.10 0.51	meter Colle r Level Stal	ble @: <b>./.l</b> :	·
Parameters         OW         Q.19         O.16           pH         3.81         3.41           Temperature (°C)         [5.43         [5.48           Specific Conductance (umino)         0.42         0.41	10,44 3.37 15.13 0.111 0.59 4 763,	1120 11.57 3.33 15.21 0.10 0.51	r Level Stal	ble @: <b>./.l</b> :	·
Parameters         OW         Q.19         O.16           pH         3.81         3.41           Temperature (°C)         [5.43         [5.48           Specific Conductance (umino)         0.42         0.41	10,44 3.37 15.13 0.111 0.59 4 763,	11.57 3.33 15.21 0.110 0.51			
pH 3.81 3.41 Temperature (°C) [5.48 [5.48 Specific Conductance (umino) 0.1/2 0.111	3.37 15.13 0.111 0.59 4 463,	3.33 [5.2] 0.110 0.51		Sample	Analysis Time
Temperature (°C)         [5.43         [5.48]           Specific Conductance (umino)         0.4/2         0.41	15.13 0.11 0.59 4 463,	15.21 0.10 0.51			
Specific Conductance (umino) 0.//2 0.111	0.11 9:539 4 463,	0.110			
	4 963,	0.51			
	4 43,				
	4 43,	424			
Redox (mV) 411 500%		74 1			
Turbidity (nta) 101 55,3	anna ang anna anna ang antara anna anna anna anna				
Color Pan Tan	Tan	Tan			
Oder Vo Vo	10	M	3		
Analysis Volume (ml) # Preservative	Zero HS	me: 1120		••••••	
			***************************************	000000000000000000000000000000000000000	
			***************************************	***************************************	•••••••••••••••••••••••••••••••••••••••
			************************************	<b>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</b>	***************************************
					***************************************
				najarniyaya najaqahada aliki ikki kiliki kili kilaba ikki aqinaa	
		***************************************			
			***************************************		
Analyst Name: Charles Pace			1 .		
1/4 - 10-10	***************************************		29/12	Ÿ	20650
Analyst Signature:		Date: <u>\</u>	-117		6. VVJU

larcommal:			ont: Janua	Proies		Tracs	Ovb	ev
Vall II): L	TW-05	Per	mit No:		VO Vapors:	ridifid bz	\$5000000000000000000000000000000000000	
			. Creative			PIDIFID CA.		
Veather Cor	nditious: 🗀	<u> Clear</u>	Z Cloudy	Other	— ~ Wind:	CONSTRUCTION CONTRACTOR AND CONTRACTOR CONTR	Temp: \	٠ <u>/ ١</u>
					**	e Method:	1011- Fl	w pari
Vell Depth:			LNAPL:_ DNAPL:_	***************************************	iurg	e Nethod:	<u> </u>	// YA!
epth to Wa	iter:Ya.	76	DNAPL:_	7 14		e Start: <b>_10</b> _	11249	
vater Colun	IIN:		Casing Di	2: <u>- 6- 1/1</u> -	rury	e swy: aton Collo	<del>M. 132</del> Vien Time	. 1042
Vell Vol:		0.40.00.00.00.00.00.00.00.00.00.00.00	Casing 10 Conv. Faci Purge Rat	ISTO M	Thin was	ncici Cunc r I ovol Stob	anon munc Jo M	·
veli voi (3X,	}	102	7 1032	e. <u>1037</u>	1042	1 872 A 2 7 1 8 24 C	Mar Villet accounts	***************************************
Varore	eters DTW		1 10.01		10.04	and the second s	Sample	Analysis Time
){{	cicis NIM	3,77		3.69	3,69			***************************************
remperature (°C		16.30		6.56	6.64		***************************************	
pecific Conduc	www.www.com.com/com/com/com/com/com/com/com/com/com/	0.162		0.158	0.159			
Dissolved Oxyg		2,57		0,82	0.64			
Redox (mV)	and the second	368	362	355	351			
Corbidity (nto)		3.7	3,2	3,4	1.2			
Color		Clear		Clear	clear			
					1 10		***************************************	
	1/29,	issayaan irragaan	Sample Co			Sam	ole Metho	1: Grab
ample Date		/18	Sample Co	illection Tir	ne: 1042		ole Metho	i: Grab
	>: 1/29	/18			unikan panja para na katan		ole Metho	1: <i>67ab</i>
ample Date		/18	Sample Co	illection Tir	ne: 1042		ple Method	i: 67ab
ample Date		/18	Sample Co	illection Tir	ne: 1042		ole Method	1: 67ab
ample Date		/18	Sample Co	illection Tir	ne: 1042		ple Method	1: 67ab
ample Date		/18	Sample Co	illection Tir	ne: 1042		ole Method	i: 670b
ample Date		/18	Sample Co	illection Tir	ne: 1042		ole Method	1: 670b
ample Date		/18	Sample Co	illection Tir	ne: 1042		ole Method	i: 670b
ample Date		/18	Sample Co	illection Tir	ne: 1042		ole Method	1: 670b
ample Date		/18	Sample Co	illection Tir	ne: 1042		ole Method	i: 670b
ample Date		/18	Sample Co	illection Tir	ne: 1042		ole Method	1: 670b
ample Date		/18	Sample Co	illection Tir	ne: 1042		ole Method	1: 670b
ample Date		/18	Sample Co	illection Tir	ne: 1042		ole Method	3: 670b
ample Date		/18	Sample Co	illection Tir	ne: 1042		ole Method	3: 670b
ample Date		/18	Sample Co	illection Tir	ne: 1042		ole Method	1: 670b
ample Date		/18	Sample Co	illection Tir	ne: 1042		ole Method	3: 670b
ample Date		/18	Sample Co	illection Tir	ne: 1042		ole Method	3: <i>670</i> b
ample Date Analysis	Volume (m)	) "	Preservative	illection Tir	ne: 1042		ole Method	1: 670b
ample Date Analysis		/18	Sample Co	illection Tir	Comments:			20650

## Appendix C Laboratory Reports